Classification Of Biomaterials and Their Applications

DOI:

https://doi.org/10.36371/port.2024.3.7

Authors

  • Nour Muhammad Salih Mahdi College of Material of Engineering, University of Technology, Baghdad, Iraq.
  • Ayad K. Hassan College of Material of Engineering, University of Technology, Baghdad, Iraq.
  • Fatima J. Al-Hasani College of Material of Engineering, University of Technology, Baghdad, Iraq.
  • Waleed Ameen Mahmoud Al-Jawher College of Engineering, Uruk University, Baghdad, Iraq

Biomaterials, designed to interact with living systems, play a vital role in various medical applications. Classifying these materials effectively is crucial for understanding their properties and ensuring optimal use. Biomaterials are classified based on their chemical composition, structure, and properties relevant for biological applications. In this paper five types of Biomaterials classification methods are given namely. Chemical, Functional, Source of biomaterials, Structural and Smart levels classification. Each of these five-biomaterial classification method offers unique advantages and disadvantages. Chemical Classification is simple and well-established method, easy to understand and interpret and provides a basic framework for material identification.  Functional Classification is directly related to the application of the biomaterial, provides insight into the desired material properties and useful for identifying materials for specific therapeutic needs. Source-Based Classification is straightforward method based on material origin and can be useful for initial categorization and understanding general material properties (e.g., natural materials often biocompatible). Structural Classification provides information about material properties like strength, degradation, and permeability and can be relevant for understanding biocompatibility and material performance. Smart Level Classification captures the advanced functionalities of next-generation biomaterials, provides insights into targeted drug delivery or controlled cell interactions and useful for identifying materials for specific therapeutic applications. The most suitable method depends on the specific context and information needs.

Keywords:

Classification Of Biomaterials, AI, Structural Classification, Smart Level Classification, Functional Classification

[1] E. T. J. Chong, J. W. Ng, and P. C. Lee, “Classification and Medical Applications of Biomaterials–A Mini Review,” BIO Integr., vol. 4, no. 2, pp. 54–61, 2023, doi: 10.15212/bioi-2022-0009.

[2] M. S. Valiathan and V. Kalliyana Krishnan, “Biomaterials: An Overview,” Natl. Med. J. India, vol. 12, no. 6, pp. 270–274, 1999, doi: 10.1002/0471732877.emd022.

[3] P. Parida, A. Behera, and S. Chandra Mishra, “Classification of Biomaterials used in Medicine,” Int. J. Adv. Appl. Sci., vol. 1, no. 3, pp. 31–35, 2012, doi: 10.11591/ijaas.v1i3.882.

[4] S. Al-Maawi, J. L. Rutkowski, R. Sader, C. J. Kirkpatrick, and S. Ghanaati, “The biomaterial-induced cellular reaction allows a novel classification system regardless of the biomaterials origin,” J. Oral Implantol., vol. 46, no. 3, pp. 190–205, 2020, doi: 10.1563/aaid-joi-D-19-00201.

[5] C. Montoya, Y. Du, A. L. Gianforcaro, S. Orrego, M. Yang, and P. I. Lelkes, “On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook,” Bone Res., vol. 9, no. 1, 2021, doi: 10.1038/s41413-020-00131-z.

[6] C. W. Arun Arjunan, and Ahmad Baroutaji,Ayyappan S Praveen,John Robinson, “Classification of Biomaterial Functionality Arun.” 2020.

[7] Arjunan, A. Baroutaji, A. S. Praveen, J. Robinson, and C. Wang, “Classification o biomaterial unctionality,” Elsevier eBooks, pp. 1–31, 2022.

[8] N. Contuzzi et al., “Metals Biotribology and Oral Microbiota Biocorrosion Mechanisms,” J. Funct. Biomater., vol. 14, no. 1, 2023, doi: 10.3390/jfb14010014.

[9] L. Vaiani et al., “Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes,” J. Funct. Biomater., vol. 14, no. 3, 2023, doi: 10.3390/jfb14030146.

[10] P. Ducheyne, M. Marcolongo, and E. Schepers, Bioceramic composites. 2013.

[11] M. Ly, S. Spinelli, S. Hays, and D. Zhu, “3D Printing of Ceramic Biomaterials,” Eng. Regen., vol. 3, no. 1, pp. 41–52, 2022, doi: 10.1016/j.engreg.2022.01.006.

[12] M. Zorah, M. Mudhafar, H. A. Naser, and I. R. Mustapa, “the Promises of the Potential Uses of Polymer Biomaterials in Biomedical Applications and Their Challenges,” Int. J. Appl. Pharm., vol. 15, no. 4, pp. 27–36, 2023, doi: 10.22159/ijap.2023v15i4.48119.

[13] H. H. Al-Moameri, D. A. Rasool, and Z. M. Nahi, “a Review of Polymer-Based Materials Used in Biomaterials for Medical Applications,” J. Eng. Sustain. Dev., vol. 26, no. 5, pp. 1–13, 2022, doi: 10.31272/jeasd.26.5.1.

[14] V. R. L. Constantino et al., “Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering,” Pharmaceutics, vol. 15, no. 2, 2023, doi: 10.3390/pharmaceutics15020413.

[15] C. H. Roeder, R. K., & Turner, “COMPOSITE BOMATERAL INCLUDING ANSOMETRIC CALCUM PHOSPHATE REINFORCEMENT PARTICLES AND RELATED METHODS,” 2010.

[16] A. Lynn, C. Gb, C. Gb, and C. Gb, “COMPOSITE BOMATERALS COMPRISING CALCIUM PHOSPATE MATERIALS, COLLAGEN AND GLYCOSAMINOGLYCANS,” 2010.

[17] García-Lizarribar, X. Fernández-Garibay, F. Velasco-Mallorquí, A. G. Castaño, J. Samitier, and J. Ramon-Azcon, “Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue,” Macromol. Biosci., vol. 18, no. 10, pp. 1–36, 2018, doi: 10.1002/mabi.201800167.

[18] E. D. S. Câmara-Pereira et al., “Characterization of biomaterial and tissue response analysis after implantation,” in Materials Science Forum, 2018, vol. 930 MSF, no. Po 4, pp. 48–52, doi: 10.4028/www.scientific.net/MSF.930.48.

[19] J. J. Li and H. Zreiqat, Tissue response to biomaterials, vol. 1–3. Elsevier Inc., 2019.

[20] S. Bhandi, O. T. Okareh, and S. Patil, “Biocompatibility of Restorative Materials- A Review,” Texila Int. J. Public Heal., vol. 11, no. 2, pp. 1–5, 2023, doi: 10.21522/TIJPH.2013.11.02.Art014.

[21] C. en Lu et al., “Monitoring the macrophage response towards biomaterial implants using label-free imaging,” Mater. Today Bio, vol. 21, no. January, p. 100696, 2023, doi: 10.1016/j.mtbio.2023.100696.

[22] R. A. Morrison et al., “Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses,” Biomater. Sci., vol. 11, no. 9, pp. 3278–3296, 2023, doi: 10.1039/d3bm00091e.

[23] M. Rafiei, J. T. Chung, and Y. Chau, “Roles of biomaterials in modulating the innate immune response in ocular therapy,” Front. Drug Deliv., vol. 3, no. February, pp. 1–27, 2023, doi: 10.3389/fddev.2023.1077253.

[24] L. Li, T. Groth, and M. Zhao, “Editorial: Bioactive soft materials and application,” Front. Bioeng. Biotechnol., vol. 11, no. July, pp. 1–2, 2023, doi: 10.3389/fbioe.2023.1248995.

[25] Negut and C. Ristoscu, “Bioactive Glasses for Soft and Hard Tissue Healing Applications—A Short Review,” Appl. Sci., vol. 13, no. 10, 2023, doi: 10.3390/app13106151.

[26] P. Carvalho et al., “Consolidation of Zn-Hydroxyapatite and Zn-Bioactive Glass Composites Using High-Pressure Torsion,” Crystals, vol. 13, no. 6, pp. 1–14, 2023, doi: 10.3390/cryst13060949.

[27] P. M. Pires et al., “Bioactive Restorative Materials Applied over Coronal Dentine—A Bibliometric and Critical Review,” Bioengineering, vol. 10, no. 6, 2023, doi: 10.3390/bioengineering10060731.

[28] Z. Zhai, X. Du, Y. Long, and H. Zheng, “Biodegradable polymeric materials for flexible and degradable electronics,” Front. Electron., vol. 3, no. September, pp. 1–20, 2022, doi: 10.3389/felec.2022.985681.

[29] G. V. Jagadeesh and S. G. Setti, “Bio-engineering and bio-design of new generation bioresorbable implants,” Indian J. Biochem. Biophys., vol. 58, no. 2, pp. 118–126, 2021, doi: 10.56042/ijbb.v58i2.35124.

[30] X. Wu and Q. Guo, “Bioresorbable photonics: Materials, devices and applications,” Photonics, vol. 8, no. 7, 2021, doi: 10.3390/photonics8070235.

[31] S. Jasmine and R. Krishnamoorthy, “Biodegradable Materials for Bone Defect Repair,” Biodegrad. Mater. their Appl., pp. 457–470, 2022, doi: 10.1002/9781119905301.ch16.

[32] L. K. Hakim et al., “Biocompatible and Biomaterials Application in Drug Delivery System in Oral Cavity,” Evidence-based Complement. Altern. Med., vol. 2021, 2021, doi: 10.1155/2021/9011226.

[33] L. Raja Mohan Reddy, M. Obula Reddy, M. Thaidun, and P. Guruprathap Reddy, “Biomaterial and its applications,” J. Inf. Comput. Sci., vol. 10, no. 1, pp. 90–94, 2020, [Online]. Available: www.joics.org.

[34] M. Zunaed and S. A. Fattah, “A Novel Hierarchical-Classification-Block Based Convolutional Neural Network for Source Camera Model Identification,” pp. 1–7, 2022, [Online]. Available: http://arxiv.org/abs/2212.04161.

[35] V. Kumar, V. Malyan, M. Sahu, and B. Biswal, “Machine Learning Classification Model to Label Sources Derived from Factor Analysis Receptor Models for Source Apportionment,” Aerosol Air Qual. Res., vol. 23, no. 7, pp. 1–11, 2023, doi: 10.4209/aaqr.220386.

[36] H. Nguyen, M. Ebbatson, Y. Tran, A. Craig, H. Nguyen, and R. Chai, “Source-Space Brain Functional Connectivity Features in Electroencephalogram-Based Driver Fatigue Classification,” Sensors, vol. 23, no. 5, 2023, doi: 10.3390/s23052383.

[37] D. qin Xu and M. ai Li, “A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification,” Appl. Intell., vol. 53, no. 9, pp. 10766–10788, 2023, doi: 10.1007/s10489-022-04077-z.

[38] H. Wang, “Biomaterials in Medical Applications,” Polymers (Basel)., vol. 15, no. 4, pp. 7–9, 2023, doi: 10.3390/polym15040847.

[39] E. Mariani, G. Lisignoli, R. M. Borzì, and L. Pulsatelli, “Biomaterials: Foreign bodies or tuners for the immune response?,” International Journal of Molecular Sciences, vol. 20, no. 3. pp. 363–364, 2019, doi: 10.3390/ijms20030636.

[40] S. Liu et al., “Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications,” Military Medical Research, vol. 10, no. 1. BioMed Central, pp. 1–30, 2023, doi: 10.1186/s40779-023-00448-w.

[41] N. I. M. Fadilah, M. Maarof, A. Motta, Y. Tabata, and M. B. Fauzi, “The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials,” Biomedicines, vol. 10, no. 9, 2022, doi: 10.3390/biomedicines10092226.

[42] Hu et al., “Design of synthetic collagens that assemble into supramolecular banded fibers as a functional biomaterial testbed,” Nat. Commun., vol. 13, no. 1, 2022, doi: 10.1038/s41467-022-34127-6.

[43] T. “Tomi” Kupka, “Nature-inspired Material – A Step Ahead in Dental Materials,” Int. Ann. Sci., vol. 12, no. 1, pp. 31–46, 2022, doi: 10.21467/ias.12.1.31-46.

[44] D. Yao, T. Wang, X. Zhang, and Y. Wang, “High Concentration Crystalline Silk Fibroin Solution for Silk-Based Materials,” Materials (Basel)., vol. 15, no. 19, 2022, doi: 10.3390/ma15196930.

[45] Simonov and A. L. Goodwin, “Designing disorder into crystalline materials,” Nat. Rev. Chem., vol. 4, no. 12, pp. 657–673, 2020, doi: 10.1038/s41570-020-00228-3.

[46] J. Liu, F. Zhorabek, and Y. Chau, “Biomaterial design inspired by membraneless organelles,” Matter, vol. 5, no. 9, pp. 2787–2812, 2022, doi: 10.1016/j.matt.2022.07.001.

[47] R. Studart and R. M. Erb, “Bioinspired materials that self-shape through programmed microstructures,” Soft Matter, vol. 10, no. 9, pp. 1284–1294, 2014, doi: 10.1039/c3sm51883c.

[48] W. Wang, X. Zhou, Z. Yin, and X. Yu, “Fabrication and Evaluation of Porous dECM/PCL Scaffolds for Bone Tissue Engineering,” J. Funct. Biomater., vol. 14, no. 7, 2023, doi: 10.3390/jfb14070343.

[49] D. R. Pontinha, B. B. Moreira, B. L. Melo, D. de Melo-Diogo, I. J. Correia, and P. Alves, “Silica Aerogel-Polycaprolactone Scaffolds for Bone Tissue Engineering,” Int. J. Mol. Sci., vol. 24, no. 12, 2023, doi: 10.3390/ijms241210128.

[50] R. Imran, A. Al Rashid, and M. Koç, “Material Extrusion 3D Printing (ME3DP) Process Simulations of Polymeric Porous Scaffolds for Bone Tissue Engineering,” Materials (Basel)., vol. 16, no. 6, 2023, doi: 10.3390/ma16062475.

[51] J. F. McCabe, Z. Yan, O. T. Al Naimi, G. Mahmoud, and S. L. Rolland, “Smart materials in dentistry,” Aust. Dent. J., vol. 56, no. SUPPL. 1, pp. 3–10, 2011, doi: 10.1111/j.1834-7819.2010.01291.x.

[52] W. Cao, H. H. Cudney, and R. Waser, “Smart materials and structures,” Proc. Natl. Acad. Sci. U. S. A., vol. 96, no. 15, pp. 8330–8331, 1999, doi: 10.1073/pnas.96.15.8330.

[53] E. Eldeeb, S. Salah, and N. A. Elkasabgy, “Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review,” AAPS PharmSciTech, vol. 23, no. 7, 2022, doi: 10.1208/s12249-022-02419-1.

[54] F. Khan and M. Tanaka, “Designing smart biomaterials for tissue engineering,” Int. J. Mol. Sci., vol. 19, no. 1, pp. 1–14, 2018, doi: 10.3390/ijms19010017.

[55] C. Fernandes, G. B. Heggannavar, M. Y. Kariduraganavar, G. R. Mitchell, N. Alves, and P. Morouço, “Smart Materials for Biomedical Applications: The Usefulness of Shape-Memory Polymers,” Appl. Mech. Mater., vol. 890, pp. 237–247, 2019, doi: 10.4028/www.scientific.net/amm.890.237.

[56] J. Zhang, Y. Guo, W. Hu, and M. Sitti, “Wirelessly Actuated Thermo- and Magneto-Responsive Soft Bimorph Materials with Programmable Shape-Morphing,” Adv. Mater., vol. 33, no. 30, 2021, doi: 10.1002/adma.202100336.

[57] N. Costa, N. Rodrigues, M. A. Seco, and A. Pereira, “SL: A Reference Smartness Level Scale for Smart Artifacts,” Inf., vol. 13, no. 8, pp. 1–18, 2022, doi: 10.3390/info13080371.

[58] G. Kusne et al., “On-the-fly closed-loop materials discovery via Bayesian active learning,” pp. 1–11, 2020.

[59] S. Ament et al., “Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams,” Sci. Adv., vol. 7, no. 51, pp. 24–26, 2021, doi: 10.1126/sciadv.abg4930.

[60] S. Leeuwenburgh, “Self-healing biomaterials for medical applications,” MATEC Web Conf., vol. 378, p. 01003, 2023, doi: 10.1051/matecconf/202337801003.

[61] Bhorkar and A. S. Dhoble, “Advances in the synthesis and application of self-assembling biomaterials,” Prog. Biophys. Mol. Biol., vol. 167, no. xxxx, pp. 46–62, 2021, doi: 10.1016/j.pbiomolbio.2021.07.011.

[62] O. S. I. Fayomi et al., “Role of Biomaterials in Automation.,” IOP Conf. Ser. Earth Environ. Sci., vol. 665, no. 1, 2021, doi: 10.1088/1755-1315/665/1/012022.

[63] R. Bogue, “Smart materials: A review of capabilities and applications,” Assem. Autom., vol. 34, no. 1, pp. 16–22, 2014, doi: 10.1108/AA-10-2013-094.

[64] G. Bocchetta, G. Fiori, S. A. Sciuto, and A. Scorza, “Performance of Smart Materials-Based Instrumentation for Force Measurements in Biomedical Applications: A Methodological Review,” Actuators, vol. 12, no. 7. 2023, doi: 10.3390/act12070261.

[65] B. K. Kashyap, V. V. Singh, M. K. Solanki, A. Kumar, J. Ruokolainen, and K. K. Kesari, “Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities,” ACS Omega, vol. 8, no. 16, pp. 14290–14320, 2023, doi: 10.1021/acsomega.2c07840.

[66] R. Singh, A. Sharma, J. Saji, A. Umapathi, S. Kumar, and H. K. Daima, Smart nanomaterials for cancer diagnosis and treatment, vol. 9, no. 1. Springer Nature Singapore, 2022.

[67] C. Huang, W. Yuan, J. Chen, L. P. Wu, and T. You, “Construction of Smart Biomaterials for Promoting Diabetic Wound Healing,” Molecules, vol. 28, no. 3, 2023, doi: 10.3390/molecules28031110.

[68] N. Farshidfar, S. Iravani, and R. S. Varma, “Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine,” Mar. Drugs, vol. 21, no. 3, 2023, doi: 10.3390/md21030189.

[69] Q. Gao, J. S. Lee, B. S. Kim, and G. Gao, “Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine,” Int. J. Bioprinting, vol. 9, no. 1, pp. 230–257, 2023, doi: 10.18063/ijb.v9i1.638.

[70] Z. Maan, N. Z. Masri, and S. M. Willerth, “Smart Bioinks for the Printing of Human Tissue Models,” Biomolecules, vol. 12, no. 1, 2022, doi: 10.3390/biom12010141.

[71] E. M. Trifanova et al., “Natural and Synthetic Polymer Scaffolds Comprising Upconversion Nanoparticles as a Bioimaging Platform for Tissue Engineering,” Molecules, vol. 27, no. 19, 2022, doi: 10.3390/molecules27196547.

[72] D. Mertz et al., “Nanocomposite Polymer Scaffolds Responding under External Stimuli for Drug Delivery and Tissue Engineering Applications,” Adv. Ther., vol. 3, no. 2, 2020, doi: 10.1002/adtp.201900143.

[73] Mantsou et al., “Fabrication of a Smart Fibrous Biomaterial That Harbors an Active TGF-β1 Peptide: A Promising Approach for Cartilage Regeneration,” Biomedicines, vol. 11, no. 7, 2023, doi: 10.3390/biomedicines11071890.

[74] S. Bhushan et al., “Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review,” Bioengineering, vol. 9, no. 12, 2022, doi: 10.3390/bioengineering9120728.

[75] Chen, J. Su, Y. Li, H. Zhang, Y. Shi, and C. Yan, “scaffolds for next-generation bone,” Int. J. Extrem. Manuf., vol. 5, pp. 032007–032007, 2023.

[76] W. Chen, H. Zhang, Q. Zhou, F. Zhou, Q. Zhang, and J. Su, “Smart Hydrogels for Bone Reconstruction via Modulating the Microenvironment,” Research, vol. 6, pp. 1–22, 2023, doi: 10.34133/research.0089.

[77] H. Wei, J. Cui, K. Lin, J. Xie, and X. Wang, “Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration,” Bone Res., vol. 10, no. 1, 2022, doi: 10.1038/s41413-021-00180-y.

[78] S. Kumari et al., “Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering,” Front. Chem., vol. 10, no. November, pp. 1–28, 2022, doi: 10.3389/fchem.2022.1051678.

[79] L R. Hussssein andJ. M. A. Al-Sammarie W. A. Mahmoud “Image Identification using Minimum Distance Classifier with Multi-Wavelet Transform” Journal of Advances in Modelling and Analysis B, Volume 46, Issue (5-6), pages 1-22, 2003.

[80] R. Ali Dihin, E. AlShemmary and Waleed Al-Jawher “Diabetic Retinopathy Classification Using Swin Transformer with Multi Wavelet” Journal of Kufa for Mathematics and Computer, Vol. 10, Issue 2, PP. 167-172.

[81] E. Dihin, R. Al-Jawher, Waleed and Al-Shemmary “Implementation of The Swin Transformer and Its Application In Image Classification” Journal Port Science Research, vol. 6, Issue 4, PP. 318-331. 2023.

[82] Rasha Ali Dihin, Ebtesam N. AlShemmary and Waleed A. Mahmoud Al-Jawher “Automated Binary Classification of Diabetic Retinopathy by SWIN Transformer” Journal of Al-Qadisiyah for computer science and mathematics (JQCM), Vol 15, Issue 1, PP. 169-178, 2023.

[83] Maryam I Mousa Al-Khuzaay, Waleed A Mahmoud Al-Jawher “ New Proposed Mixed Transforms: CAW and FAW and Their Application in Medical Image Classification” International Journal of Innovative Computing, Vol. 13, Issue 1-2, PP. 15-21, 2022.

[84] W. A. Mahmoud & Z. J. M. Saleh “ An Algorithm for Computing Multiwavelets &Inverse Transform Using an Over-Sampled Scheme of Pre& Post processing respectively”

[85] AH Salman, WAM Al-Jawher “A Hybrid Multiwavelet Transform with Grey Wolf Optimization Used for an Efficient Classification of Documents” International Journal of Innovative Computing 13 (1-2), 55-60, 2022.

[86] WA Mahmoud, AI Abbas, NAS Alwan “Face Identification Using Back-Propagation Adaptive Multiwavelet” Journal of Engineering 18 (3), 2012.

[87] Rasha Ali Dihin, Waleed A Mahmoud Al-Jawher, Ebtesam N AlShemmary “Diabetic Retinopathy Image Classification Using Shift Window Transformer”, International Journal of Innovative Computing, Vol. 13, Issue 1-2, PP. 23-29, 2022.

[88] Waleed Ameen Mahmoud Al-Jawher, A. Barsoum and Entather Mahos “Fuzzy Wavenet (FWN) classifier for medical images” Al-Khwarizmi Engineering Journal, Vol. 1, Issue 2, PP. 1-13, 2005.

[89] SMR Taha, WA Mahmood “New techniques for Daubechies wavelets and multiwavelets implementation using quantum computing” Facta universitatis-series: Electronics and Energetics 26 (2), 145-156, 2013.

[90] W. A. Mahmoud & I. A Al-Akialy “A Tabulated Method of Computation Multiwavelet Transform” Al-Rafidain University College, Vol. 15, PP. 161-170, Iraq, 2004.

[91] WA Mahmoud “Computation of Wavelet and Multiwavelet Transforms Using Fast Fourier Transform” Journal Port Science Research 4 (2), 111-117, 2021.

[92] AAR Sakran, SM Hadi, WAM Al-Jawher “A New Approach for DNA Sequence Analysis Using Multiwavelet Transform (MWT)” Journal of Physics: Conference Series 2432 (1), 012022.

[93] SM Saadi, WAM Al-Jawher “ Proposed DeepFake Detection Method Using Multiwavelet Transform” International Journal of Innovative Computing 13 (1-2), 61-66, 2022.

[94] AH Salman, WAM Al-Jawher “A Hybrid Multiwavelet Transform with Grey Wolf Optimization Used for an Efficient Classification of Documents” International Journal of Innovative Computing 13 (1-2), 55-60, 2022.

[95] WA Mahmoud, AS Hadi, TM Jawad “Development of a 2-D Wavelet Transform based on Kronecker Product” - Al-Nahrain Journal of Science, Vol. 15, Issue 4, PP. 208-213, 2012.

[96] H. Al-Taai, Waleed A. Mahmoud & M. Abdulwahab “New fast method for computing multiwavelet coefficients from 1D up to 3D” , Proc. 1st Int. Conference on Digital Comm. & Comp. App., Jordan, PP. 412-422, 2007.

[97] Waleed A. M. Al-Jawher, T Abbas – “Feature combination and mapping using multiwavelet transform” IASJ, AL-Rafidain, Issue 19, Pages 13-34, 2006

[98] WA Mahmoud, MS Abdulwahab, HN Al-Taai: “The Determination of 3D Multiwavelet Transform” IJCCCE, vol. 2, issue 4, 2005.

[99] WA Mahmoud, ALM Rasheed “3D Image Denoising by Using 3D Multiwavelet” AL-Mustansiriya J. Sci 21 (7), 108-136, 2010.

[100] WA Mahmoud “Computation of Wavelet and Multiwavelet Transforms Using Fast Fourier Transform” Journal Port Science Research 4 (2), 111-117, 2021.

[101] Walid A Mahmoud, Majed E Alneby, Wael H Zayer “2D-multiwavelet transform 2D-two activation function wavelet network-based face recognition” J. Appl. Sci. Res, vol. 6, issue 8, 1019-1028, 2010.

[102] H. M Hasan, Waleed A. Mahmoud Al- Jawher, M. A Alwan “3-d face recognition using improved 3d mixed transform” Journal International Journal of Biometrics and Bioinformatics, Vo. 6, Issue 1, PP. 278-290, 2012.

[103] Waleed A Mahmoud, MR Shaker “3D Ear Print Authentication using 3D Radon Transform” proceeding of 2nd International Conference on Information & Communication Technologies, Pages 1052-1056, 2006.

[104] W. A. Mahmoud Z Jalal & N. K. Wafi “A New Method of Computing Multi-wavelets Transform using Repeated Row Preprocessing.” Al-Rafidain Engineering Journal, Vol. 12, Issue 2, PP. 21-31., 2004.

[105] AHM Al-Heladi, WA Mahmoud, HA Hali, AF Fadhel “Multispectral Image Fusion using Walidlet Transform” Advances in Modelling and Analysis B, Volume 52, Iss. 1-2, pp. 1-20, 2009.

[106] Waleed Ameen Mahmoud “A Smart Single Matrix Realization of Fast Walidlet Transform” Journal of Research and Reviews in Computer Science, Volume 2, Issue, 1, PP 144-151, 2011.

[107] W. A. Mahmoud, J J. Stephan and A. A. Razzak “Facial Expression Recognition Using Fast Walidlet Hybrid Transform” Journal port Science Researchو Volume3, No:1, Pages 59-69 2020.

[108] Maryam I Mousa Al-Khuzaay, Waleed A Mahmoud Al-Jawher, “New Proposed Mixed Transforms: CAW and FAW and Their Application in Medical Image Classification” International Journal of Innovative Computing, Volume 13, Issue 1-2, Pages 15-21, 2022.

[109] Ali Akram Abdul-Kareem, Waleed Ameen Mahmoud Al-Jawher, “Image Encryption Algorithm Based on Arnold Transform and Chaos Theory in the Multi-wavelet Domain”, International Journal of Computers and Applications, Vol. 45, Issue 4, pp. 306-322, 2023.

[110] M Walid A Mahmoud, Majed E Alneby, Wael H Zayer “Multiwavelet Transform And Multi-Dimension-Two Activation Function Wavelet Network Using For Person Identification” Iraqi Journal Of Computers, Communications, Control And Systems Engineering, Vol 11, Issue 1, 2011.

[111] W. A. Mahmoud & Ommama Razaq “Speech recognition using new structure for 3D neural network” University of Technology, 1st Computer Conference, PP. 161-171, 2010.

[112] Walid A Al-Jowher, Nada N Al-Ramahi, Mikhled. Alfaouri "Image Identification And Labeling Using Hybrid Transformation And Neural Network" Neural Network World: International Journal on Neural and Mass - Parallel Computing and Information Systems; Prague, Volume 17, Issue 4, Pages 377-395, 2007.

[113] Waleed A. Mahmud Al-Jawher, Talib M. J. Abbas Al-Talib, R. Hamudi A. Salman “Fingerprint Image Recognition Using Walidlet Transform” Australian Journal of Basic and Applied Sciences, Australia, 2012.

[114] Maryam I Mousa Al-Khuzaie, Waleed A Mahmoud Al-Jawher “Enhancing Brain Tumor Classification with a Novel Three-Dimensional Convolutional Neural Network (3D-CNN) Fusion Model” Journal Port Science Research, Volume 7, Issue 3, Pages 254-267, 2024.

[115] F. Katran, Ebtesam N AlShemmary, Waleed Ameen Al Jawher “Deep Learning's Impact on MRI Image Analysis: A Comprehensive Survey” Texas Journal of Engineering and Technology, Vol. 25, PP. 63-80, 2023.

[116] Sarah H Awad Waleed A Mahmoud Al-Jawher “Precise Classification of Brain Magnetic Resonance Imaging (MRIs) using Gray Wolf Optimization (GWO)” HSOA Journal of Brain & Neuroscience Research, Volume 6, Issue 1, Pages 100021, 2022.

[117] Afrah U Mosaa, Waleed A Mahmoud Al-Jawher “A proposed Hyper-Heuristic optimizer Nesting Grey Wolf Optimizer and COOT Algorithm pages for Multilevel Task” Journal Port Science Research, Vol. 6, Issue 4, Pages 310-317, 2023.

[118] U Mosa, Waleed A Mahmoud Al-Jawher “Image Fusion Algorithm using Grey Wolf optimization with Shuffled Frog Leaping Algorithm” International J. of Innovative Computing, Vol. 13, Issue 1-2, PP. 1-5. 2022.

[119] Walid Amin Al-Jawhar, Ayman M Mansour, Zakaria M Kuraz “Multi technique face recognition using PCA/ICA with wavelet and Optical Flow” 2008 5th International Multi-Conference on Systems, Signals and Devices, pages 1-6, 2008.

[120] W. A. Mahmoud & Z. Ragib “Face Recognition Using PCA and Optical Flow” Engineering Journal, Vol. 13, Issue 1, PP. 35-47, 2007.

[121] WAM Al-Jawher, SH Awad “A proposed brain tumor detection algorithm using Multi wavelet Transform (MWT)” Materials Today: Proceedings 65, 2731-2737, 2022.

[122] Shaymaa Abdulelah Shaban, Waleed A Mahmoud Al-Jawher “K-Means Clustering Algorithm for Medical Images” International Journal of Advances in Engineering and Management (IJAEM), Vol. 4, Issue 11, 2022.

[123] W. A. Mahmoud, Jane Jaleel Stephan and A. A. W. Razzak “Facial Expression Recognition from Video Sequence Using Self Organizing Feature Map” Journal port Science Researchو Transaction On Engineering, Technology And Their Applications, Vol. 4, Issue 2, 2021.

[124] Ahmed Hussein Salman, A Waleed, Mahmoud Al-Jawher "Image Document Classification Prediction based on SVM and gradient-boosting Algorithms" Journal Port Science Research, Volume 6, Issue 4, Pages 348-356, 2023.

[125] Waleed A Mahmoud, Ahmed S Hadi “Systolic Array for Realization of Discrete Wavelet Transform “ Journal of Engineering, Vol. 13, Issue 2, PP. 1-9, 2007.

[126] KN Kadhim, SMR Taha, WA Mahmoud “A new method for filtering and segmentation of the ECG signal”, Proceedings of the Annual International Conference of the IEEE Engineering …, 1988.

[127] WAM Al-Jawher, SAA SHABAN “Clustering Of Medical Images Using Multiwavelet Transform And K-Means Algorithms” Journal Port Science Research 5 (1), 35-42, 2022.

[128] WAM Al-Jawher, SH Awad “A proposed brain tumor detection algorithm using Multi wavelet Transform (MWT)” Materials Today: Proceedings 65, 2731-2737, 2022.

[129] Waleed A Mahmoud, Dheyaa J Kadhim “A Proposal Algorithm to Solve Delay Constraint Least Cost Optimization Problem” Journal of Engineering, Vol. 19, Iss 1, PP 155-160, 2013.

[130] AHM Al-Helali, Waleed A. Mahmoud, HA Ali “A Fast personal palm print authentication Based on 3d-multi–Wavelet Transformation”, Transnational Journal Of Science And Technology, Vol. 2, Issue 8, 2012.

[131] Hamid M Hasan, AL Jouhar, Majid A Alwan "Face recognition using improved FFT based radon by PSO and PCA techniques" International Journal of Image Processing (IJIP), Volume 6, Issue 1, Pages 26-37, 2012.

[132] Adnan HM Al-Helali, Hamza A Ali, Buthainah Al-Dulaimi, Dhia Alzubaydi, Walid A Mahmoud “Slantlet transform for multispectral image fusion” Journal of Computer Science, Vol.5, Issue 4, PP. 263-267, 2009.

[133] Ali Akram Abdul-Kareem, Waleed Ameen Mahmoud Al-Jawher, “WAM 3D discrete chaotic map for secure communication applications” International Journal of Innovative Computing, Volume 13, Issue 1-2, Pages 45-54, 2022.

[134] A. Abdul-Kareem, Waleed A. Mahmoud Al-Jawher, ”URUK 4D Discrete Chaotic Map For Secure Communication Applications” Journal Port Science Research, Vol. 5, Issue 3, PP. 131-141, 2023.

[135] Ali Akram Abdul-Kareem, Waleed Ameen Mahmoud Al-Jawher ”Hybrid image encryption algorithm based on compressive sensing, gray wolf optimization, and chaos” , Journal of Electronic Imaging, Volume 32, Issue 4, Pages 043038-043038, 2023.166, 2023.

[136] Saleem MR Taha, Walid A Mahmood "New techniques for Daubechies wavelets and multiwavelets implementation using quantum computing “Journal Facta universitatis-series: Electronics and Energetics, Volume 26, Issue 2, Pages 145-156, 2013.

[137] Ali Akram Abdul-Kareem, Waleed Ameen Mahmoud Al-Jawher “A Hybrid Domain Medical Image Encryption Scheme Using URUK and WAM Chaotic Maps with Wavelet–Fourier Transforms” Journal of Cyber Security and Mobility, Pages 435–464-435–464, 2023.

[138] Q. K Abed, W. A Mahmoud Al-Jawher “A Robust Image Encryption Scheme Based on Block Compressive Sensing and Wavelet Transform” International J. of Innovative Computing, Vol. 13, I. 1-2, PP. 7-13, 2022.

[139] Zahraa A Hasan, Suha M Hadi, Waleed A Mahmoud, “Speech scrambler with multiwavelet, Arnold Transform and particle swarm optimization” Journal Pollack Periodica, Volume 18, Issue 3, Pages 125-131, 2023.

[140] Ali Akram Abdul-Kareem, Waleed Ameen Mahmoud Al-Jawher “ An image encryption algorithm using hybrid sea lion optimization and chaos theory in the hartley domain” International Journal of Computers and Applications, Vol. 46, Issue 5, PP. 324-337, 2024.

[141] Qutaiba Kadhim, Waleed Ameen Mahmoud Al-Jawher “A new multiple-chaos image encryption algorithm based on block compressive sensing, swin transformer, and wild horse optimization” Multidisciplinary Science Journal, Vol. 7, Issue 1, PP. 2025012-2025012, 2024.

[142] Saadi M. Saadi, Waleed Al-Jawher “Ensemble-Based Machine Learning Approach for Detecting Arabic Fake News on Twitter.” Publication date 2024/2/1, Journal Revue d'Intelligence Artificielle, Volume 38, Issue 1, 2024.

Mahdi, N. M. S., Hassan, A. K. ., Al-Hasani, F. J., & Al-Jawher, W. A. M. . (2024). Classification Of Biomaterials and Their Applications. Journal Port Science Research, 7(3), 281–299. https://doi.org/10.36371/port.2024.3.7

Downloads

Download data is not yet available.